Erythroid Krüppel-like factor directly activates the basic Krüppel-like factor gene in erythroid cells.

نویسندگان

  • Alister P W Funnell
  • Christopher A Maloney
  • Lucinda J Thompson
  • Janelle Keys
  • Michael Tallack
  • Andrew C Perkins
  • Merlin Crossley
چکیده

The Sp/Krüppel-like factor (Sp/Klf) family is comprised of around 25 zinc finger transcription factors that recognize CACCC boxes and GC-rich elements. We have investigated basic Krüppel-like factor (Bklf/Klf3) and show that in erythroid tissues its expression is highly dependent on another family member, erythroid Krüppel-like factor (Eklf/Klf1). We observe that Bklf mRNA is significantly reduced in erythroid tissues from Eklf-null murine embryos. We find that Bklf is driven primarily by two promoters, a ubiquitously active GC-rich upstream promoter, 1a, and an erythroid downstream promoter, 1b. Transcripts from the two promoters encode identical proteins. Interestingly, both the ubiquitous and the erythroid promoter are dependent on Eklf in erythroid cells. Eklf also activates both promoters in transient assays. Experiments utilizing an inducible form of Eklf demonstrate activation of the endogenous Bklf gene in the presence of an inhibitor of protein synthesis. The kinetics of activation are also consistent with Bklf being a direct Eklf target. Chromatin immunoprecipitation assays confirm that Eklf associates with both Bklf promoters. Eklf is typically an activator of transcription, whereas Bklf is noted as a repressor. Our results support the hypothesis that feedback cross-regulation occurs within the Sp/Klf family in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Krüppel family proteins Sp1 and EKLF.

An unresolved aspect of current understanding of erythroid cell-specific gene expression relates to how a limited number of transcriptional factors cooperate to direct high-level expression mediated by cis-regulatory elements separated over large distances within globin loci. In this report, we provide evidence that GATA-1, the major erythroid transcription factor, activates transcription in a ...

متن کامل

Unanticipated repression function linked to erythroid Krüppel-like factor.

The erythroid cell-specific transcription factor erythroid Krüppel-like factor (EKLF) is an important activator of beta-globin gene expression. It achieves this by binding to the CACCC element at the beta-globin promoter via its zinc finger domain. The coactivators CBP and P300 interact with, acetylate, and enhance its activity, helping to explain its role as a transcription activator. Here we ...

متن کامل

Functional interaction of GATA1 with erythroid Krüppel-like factor and Sp1 at defined erythroid promoters.

GATA and CACC elements commonly are codistributed within the regulatory domains of a variety of erythroid genes. Using Drosophila S2 cells, the actions of GATA1, Sp1, and erythroid Kruppel-like factor (EKLF) at these elements within model erythroid promoters have been assessed. For each promoter studied (erythroid pyruvate kinase, glycophorin B, and a murine betamaj globin-derived construct, GC...

متن کامل

EKLF and KLF2 have compensatory roles in embryonic beta-globin gene expression and primitive erythropoiesis.

The Krüppel-like C2/H2 zinc finger transcription factors (KLFs) control development and differentiation. Erythroid Krüppel-like factor (EKLF or KLF1) regulates adult beta-globin gene expression and is necessary for normal definitive erythropoiesis. KLF2 is required for normal embryonic Ey- and betah1-, but not adult betaglobin, gene expression in mice. Both EKLF and KLF2 play roles in primitive...

متن کامل

Krüppel-like factors compete for promoters and enhancers to fine-tune transcription

Krüppel-like factors (KLFs) are a family of 17 transcription factors characterized by a conserved DNA-binding domain of three zinc fingers and a variable N-terminal domain responsible for recruiting cofactors. KLFs have diverse functions in stem cell biology, embryo patterning, and tissue homoeostasis. KLF1 and related family members function as transcriptional activators via recruitment of co-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 27 7  شماره 

صفحات  -

تاریخ انتشار 2007